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Abstract. The kinetics of cation ordering in complex crystal structures, such as minerals and
ceramics, is discussed with regard to the applicability of time-dependent Ginzburg–Landau
theory (TDGL). Deviations from the predictions made by TDGL may arise due to partial
conservation of continuous and non-uniform order parameters at low temperatures. Under these
conditions the movement of areas with large order parameter gradients (‘walls’) provides a local
alternative to the continuous ordering kinetics described by TDGL. A simple phenomenological
description of order parameter kinetics taking these constraints into consideration can be
obtained. The underlying assumption is that the geometry of spatial order parameter variation
close to equilibrium resembles that of a phase-separated system. The resulting kinetics differs
substantially from the predicted TDGL behaviour.

1. Introduction

In recent years the kinetics of cation ordering has been studied experimentally for various
mineral structures [1–3], the aim has been to test the applicability of time-dependent
Ginzburg–Landau theory (TDGL) to such processes. The experiments were accompanied
by theoretical and computational studies of relevant model systems [4–6]. Both approaches
confirm that the driving force of the kinetic process can generally be identified with the
excess Gibbs free energy of an underlying phase transition.

Theoretical considerations have already focused on the kinetics of systems in which
the order parameter is spatially non-uniform and partially conserved [5, 7]. Whereas most
studies undertaken so far indicated the possibility of pattern formation as a result of the
non-equilibrium state [8, 9], our primary interest here is in how initial non-uniformities will
influence the time evolution of the macroscopic order parameter.

An experimental approach for examining such a situation involves the low-temperature
quenching of a crystal structure undergoing an order–disorder transition. Starting fromT0

below the phase transition temperatureTc, a subsequent rapid quench toT � T0 < Tc

establishes the new equilibrium state at this temperature after some time delay. The
macroscopic symmetry remains unaffected, and the order parameter domains of opposite
sign have coarsened considerably before the quench, effectively reducing the system size to
that of a single domain.
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The relevant order parameter for cation ordering—or, in more general terms, for
substitutional ordering—is defined by the linear combination of sublattice concentrations.
It is equivalent to the staggered magnetization of an antiferromagnet. This order parameter
is non-conserved, whereas the total concentration of cations is conserved for any closed
system.

TDGL theory describes the motion of a continuous order parameter as a function of the
driving force, determined by a Gibbs free energyGkin:

∂Q

∂t
∝ ∂Gkin

∂Q
(1)

which can be identified with the coarse-grained free energy of an underlying phase transition
Gkin = GL. This is normally approximated using the standard Ginzburg–Landau form

GL =
∫

dr

[
1

2
g|∇Q|2+ fL(Q)− hQ

]
(2)

fL(Q) ∼= 1

2
AQ2+ 1

4
BQ4+ · · · (3)

where the coefficient of the gradient energy,g, is given by

g = |A|ξ2. (4)

ξ is the correlation length of the phase transition andξ0(T = 0 K) defines the range of
interactions. The coefficientA is temperature dependent, and is negative forT < Tc. In
the mean-field case,ξ diverges with a critical exponentν = 1/2 at Tc:

ξ = ξ0

( |T − Tc|
Tc

)−ν
. (5)

The temperature dependence of the higher-order terms in (3) becomes significant in the
case of non-harmonic entropy contributions. We will assume that no fieldh couples to the
order parameter in the following.

The kinetics of phase transitions is usually described in terms of two different models.
If the order parameter varies continuously, even on a length scale comparable to the unit-cell
dimensions, TDGL theory predicts the ordering kinetics correctly [10]. In contrast, if the
order parameter varies discontinuously, the kinetics is described by kinetic Ising models
[4, 10]. In the case of a two-state Ising model, the order parameter per lattice site is either
−1 or +1 (the pseudo-spin model). If the total spin is conserved, the configurations can
only change through spin-exchange processes (Kawasaki dynamics). This corresponds to
a simple microscopic model of cation ordering. Continuous order parameters now can be
obtained via coarse graining, andGkin differs substantially fromGL [4].

In real systems, and especially in complex structures, the situation is not always as clear
cut as in these two models. Whether the order parameter varies continuously or not depends
crucially on ξ . This in turn is bound to change with temperature, and it has been shown
that in fact at temperatures not too far belowTc, the time evolutions of the order parameter
predicted in the two models are almost indistinguishable [4], whereas this is not the case
at low temperaturesT 6 0.8Tc, where Kawasaki dynamics predicts far slower ordering
kinetics than TDGL theory.

2. Fluctuations, order parameter flux and the concept of mixed kinetics

The following discussion will be limited to a strictly deterministic model, as the primary
interest lies in low-temperature quenches, i.e. the limitT = 0. However, if thermal
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fluctuations become important, as is certainly the case at temperatures close toTc and
then especially for ordering states close to equilibrium, a Langevin approach (cf. e.g. [11])
using stochastic forces is more appropriate.

A well known equation describing the time dependence of non-uniformities—of
an otherwise conserved order parameter—is the Cahn–Hilliard equation (CHE) [11].
It describes the phase separation processes following spinodal decomposition at least
qualitatively correctly:

∂Q
∂t
= ∇

[
(τ2RT )

−1∇ ∂G
∂Q

]
(6)

whereQ is defined by

Q(r, t) = Q0+Q(r, t) (7)

with Q0 as the conserved quantity, i.e. the concentration.
It is tempting to introduce ‘mixed kinetics’ by settingQ0 = Q(t), and hence describing

the kinetics of a non-uniform order parameter using the CHE on a background of non-
conserved ordering. To illustrate this, let us for the moment assume thatQ(r) varies only
between two extremes.

Figure 1. Schematic diagrams of a spatially varying order parameter. (a) The non-conserved
case: equilibrium is attained via order parameter increase (upwards arrows). (b) The conserved
case: equilibrium is attained via decomposition into two phases.〈Q〉 is constant. Wall movement
coarsens the resulting pattern. (c) The partially conserved case: ordering atQ2 slows down,
while 〈Q〉 increases due to the increase ofQ1 and due to wall movement. Eventually, ordered
clusters coalesce to form a uniform structure.

Figure 1(a) shows the fluctuating order parameterQ(r) sketched as a pulse-shaped line,
oscillating between the two valuesQ1 andQ2. Order parameter increase, as dictated by
the driving force, is tantamount to elevation of the horizontal sections. This behaviour
corresponds to purely non-conserved ordering and it will proceed with non-identical rates at
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the two levels. The walls† separating the two order parameter levels will broaden, but their
position will remain unchanged. The time dependence of the fluctuations will be governed
by the initial order parameter distribution.

In contrast, in a phase-separation process with fully conserved order parameter〈Q〉 the
vertical motion points in opposite directions atQ1 andQ2 (figure 1(b)). Therefore volume
fractionspα andpβ , constrained by〈Q〉 = pαQα+pβQβ , develop. The initial pattern will
then coarsen in order to minimize the interface between the two phases.

Figure 1(c) shows the superposition of the two schemes: ordering at small local levels
of Q(r) is substantially inhibited by order parameter flow towards the wall. The walls
therefore progress into these disordered regions. Simultaneously, ordering within the well
ordered regions accelerates. Hence, the deciding effect of conservation is the stabilization
of fluctuations, as opposed to the suppression of fluctuations in a purely non-conserved
picture.

The coarsening process anticipated for the late stages of phase separation follows
a power-law behaviour:L(t) ∝ tn (for a review see [12]), whereL(t) denotes the
characteristic length scale, either given by the scale size of an interpenetrating network
of the two phases (pα ≈ pβ) or given by the average size of isolated grains of a minority
phase (pα 6= pβ). The exponentn in this growth law is generally determined by the order
parameter dynamics: if the order parameter is conserved,n = 1

3; if it is non-conserved,
n = 1

2.
In order to adjust rate equation (1) to the general picture of a spatially non-uniform

order parameter, equation (8) has been introduced [7]:

∂Q

∂t
(r) = −(τRT )−1

(
1− ξ

2
c

ξ2

sinh(ξ ∇)
ξ ∇

)
∂G

∂Q
(r) (8)

whereξc is the typical length scale of conservation, e.g. the average distance over which
cation exchange processes (‘Kawasaki jumps’) occur, whileτ sets the timescale of the
kinetic process. The operator part of this rate equation effectively interpolates between (1),
i.e. non-conserved kinetics, and the CHE (6).

Using the relationξ2
c = ξ2τ−1

2 /(τ−1
1 + τ−1

2 ) [7], we can write down (8) in terms of the
two time constantsτ1 andτ2, for non-conserved and for conserved dynamics respectively:

∂Q

∂t
(r) = −τ

−1
1 + τ−1

2

RT

(
1− τ−1

2

τ−1
1 + τ−1

2

sinh(ξ ∇)
ξ ∇

)
∂G

∂Q
(r). (9)

By settingξ2
c /ξ

2 = 1 while truncating at the lowest-order term in the operator, the CHE is
recovered from (8).

In the long-wavelength limit, equation (8) rescales the rate of ordering by a factor of
1− ξ2

c . Any reduction in the ordering rate of the less-ordered regions is fully compensated
by accelerated kinetics inside the better-ordered regions. This balance however has to break
down as soon as these regions have equilibrated locally‡. Therefore we expect deviations
of the order parameter kinetics from the strictly non-conserved behaviour during the late
stages of ordering.

† The notion of awall in this context is not that of a domain boundary, but rather that of an interface between
ordered and less-ordered regions.
‡ This holds in the deterministic picture—if thermal fluctuations are considered, the local threshold extends to
Q(r) = 1, i.e. the order parameter saturates locally.
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3. A simple driving force

Following (2), the simplest Ginzburg–Landau approximation to the coarse-grained free
energy of a continuous phase transition is given by

GLG =
∫ {

1

2
α(T − Tc)Q

2+ 1

4
BQ4+ 1

2
g′
(
∂Q

∂r

)2
}

dV . (10)

Here Tc = B/α, and the equilibrium order parameter has the temperature dependence
Q = (1 − t̂ )1/2 with t̂ = T/Tc. A change to dimensionless quantities is achieved by
definingB = B/kBT , a = α/kB and g = g′/kBT . Furthermore, we will define Fourier
coordinatesQk, using

Q(r) =
∑
k

Qke
ikr . (11)

The temperature dependence is accommodated asA = at̂−B. Assuming that the modes
Qk are decoupled, we can write down the energy density as a function of the wavevectork:

GLG(k) = 1

2
(A+ gk2)(Qk)

2+ 1

4
B(Qk)

4 (12)

obtaining thedriving force

∂G
∂Q

(k) = (A+ gk2)Qk + B(Qk)
3. (13)

The general rate equation (8) becomes

∂Qk

∂t
= −τ−1

(
1− ξ

2
c

ξ2

sin(ξk)

ξk

)
∂G

∂Q
(k) (14)

with the solution

Q2
k(t) =

(Q0
k)

2φ(k) exp(−21t τ−1ψ(k)φ(k))

φ(k)+ B(Q0
k)

2
{
1− exp(−21t τ−1ψ(k)φ(k))

} (15)

whereφ(k) = A+ gk2 and

ψ(k) =
(

1− ξ
2
c

ξ2

sin(ξk)

ξk

)
define thek-dependence of internal energy and time constant respectively.Q0

k is the profile
of Qk at t = t0 and1t = t − t0 is the time-step.

4. Ordering and growth combined

As we expect the cluster growth to be governed by simple scaling behaviour, it is convenient
to separate the contributions of this growth process from the collective ordering process.
Hence we will define two order parameter componentsQµ andQν , each of which contributes
to the macroscopic order parameter with a weight given by the degree of order parameter
conservation.

The componentµ obeys (15) withk = 0. The timescale is reduced to(1− ξ2
c /ξ

2)/τ =
(1− p)/τ , due to order parameter conservation.

Qν scales with the size of ordered clusters, with the initial randomly distributed spatial
variation serving as a nucleation centre. With the only source of order parameter restricted
to theµ-component, the growth ofQν is limited by the timescale(1− p)/τ2. The sum
τ−1

1 + τ−1
2 = τ−1 defines the total rate of ordering, as introduced in (9).
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The macroscopic average〈Q〉 is

〈Q〉 = (1− p)Qµ(t)+ pQν(t). (16)

For any scalar order parameter the growth of ordered regions will proceed according to
a power lawL(t) ∝ tn. The order parameter can therefore be expected to scale with an
exponentm = dn/2, whered is the dimensionality of the ordered clusters and the factor
1/2 derives from the conventional case in which the transformed volume is proportional to
the square of the order parameter.

The nucleation process is identified with the local equilibration of ordered droplets.
Therefore the nucleation rate will quickly subside and we can, in a first approximation,
assume that the number of nuclei per unit volume,Nν , is constant. The resulting growth
law is

qν(t) = Nν
(
(1− p)t
τ2

)m
. (17)

Growth eventually has to cease, due to the coalescence of ordered particles. This
saturation effect can be taken into account by using (17) as the argument of the Kolmogorov–
Johnson–Mehl–Avrami (KJMA) equation (e.g. [13]). Appropriate normalization then yields

Qν(t) = Q0+ (Qeq−Q0)[1− exp(−qν(t))]. (18)

If the ordering process is thermally activated, we expectτ−1 = γ exp(−1G/RT ),
where1G is a Gibbs free energy of activation andγ sets the timescale. If the temperature
dependence ofτ2 differs from that ofτ1, thenξ2

c /ξ
2 will be temperature dependent. One

would generally expect this to be the case, asξ diverges on approachingTc, while the
temperature dependence ofξc is dominated by the activation energy of the underlying
diffusion process.

The approximation outlined in this section is useful ifQ(t) is known from experiment.
Thenξ2

c /ξ
2 can be determined without explicit consideration of thek-dependence. Further

adjustments to the model can be introduced via a non-zero nucleation rate, i.e. by defining
Nν as a function ofQµ.

4.1. The structure factor and the definition of the coarsening stage

Experimentally, the order parameter kinetics in an order–disorder system is usually followed
via scattering experiments. If the critical point is at the zone boundary of the high-symmetry
phase, the degree of long-range order is given by the intensity of a superstructure reflection.
The measured quantity is thestructure factor:

S(k, t) = 〈|Q(k, t)|2〉 =
∫
〈Q(r, t)Q(r′, t)〉 exp(ik · (r − r′)) dr dr′. (19)

This is the Fourier transformation of the equal-time pair correlation function. Its integrated
intensity measures the degree of short-range order (SRO), while thek = 0 component gives
the uniform part,S(k = 0, t) = Q2(t), i.e. the intensity of the Bragg reflection (which is of
finite width in any realistic experimental setting). For the non-uniform part, the sum rule∫

k 6=0
S(k, t) dk = 〈[Q(r)−Q]2〉 (20)

holds. Here the integration is cut off at the inverse coarse-graining length.
If the order parameter is conserved, equation (20) can be evaluated as

〈[Q(r)−Q]2〉 ∼= (Qβ −Q)(Q−Qα)
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during the late stages of phase separation [11].
However, in the case considered here,Q is a function of time, and instead of a

phase mixture we expect a uniform order parameterQeq for t → ∞. We can argue that
fluctuations will be limited to the intervalQ2 < Q(r) < Q1 = Qeq during the late stages
(figure 1). Splitting the order parameter in analogy to section 4, we now haveQµ = Qeq

andQν = Q2(t). The fluctuation average is then approximated by

〈[Q(r)−Q]2〉 ∼= [Qeq−Q(t)][Q(t)−Q2(t)] (21)

with

Q2(t) = Q(t)− (1− p)Qeq

p
(22)

for p > 0.
After addition of the Bragg reflection intensity,Q2, and substitution for the integral in

(20) with the average of discrete structure factor componentsQ2
k, one obtains

〈Q2
k〉k = Q(t)Qeq+Q2(t)(Q(t)−Qeq). (23)

The time derivative of (23) determines the growth rate of the macroscopic order
parameter: (

∂Q

∂t

)
= p

Q(t)− (1− p)Qeq

〈
Qk

∂Qk

∂t

〉
k

. (24)

Equation (24) describes the time dependence of the order parameter during what we
will refer to as thecoarsening stage. The onset of this regime requiresQ2 to be positive,
and therefore (24) is the valid rate equation forQ(t) > (1− p)Qeq. Below this threshold
no local order parameter saturation occurs and the conservation process has no effect on
the time evolution of the long-range-order parameter other than a time constant rescaling.

In order to solve (24), we have to plug inQk(t) as given by (15) (or generally the
corresponding solution of (14)). Then one can solve (24) numerically, averaging over a
sufficient number of componentsQk(t).

5. Specific results for a second-order phase transition

In order to define a realistic starting point we assume that the pair correlation function
close to the critical temperature is well described by the Ornstein–Zernike formalism. The
structure factor att = 0 and t̂ = T0/Tc will hence be given by the Lorentzian

Q2
k =

T0

Tc(|A| + gk2)
. (25)

We further assume that the local order parameter variation has no preferred orientation
and we will henceforth restrict the model to one dimension ink. The temperature
dependence ofξ is given by (5), and we stipulate thatξc = ξ(T = 0). The underlying basic
length scale,ac, is, in the simplest case, the cell edge of a primitive cubic lattice, although
in most cases of practical interest the symmetry will be lower. For complex structuresac

is large compared to the interatomic distances, and we expect a single unit cell to provide
a large number of possible configurations for the ordering process. It is therefore sufficient
to identify the coarse-graining length withac for our model calculations.

As we postulateξc to be temperature independent, the mixing coefficient isp = ξ2
c /ξ

2 =
1− t̂ . The model parameters area = 1, Tc = 1 andξc = 2ac. Qk(t) is calculated for 100
modes in the range 06 k 6 1/ac.



8082 T Malcherek et al

Figure 2. The calculated order parameter kinetics for isothermal annealing at 0.9Tc, 0.7Tc,
0.5Tc, 0.3Tc and 0.1Tc (in order of ascending equilibrium order parameter) after a quench from
0.99Tc. The mixing coefficient depends on temperature asξ2

c /ξ
2 = 1− t̂ .

Figure 3. The order parameter kinetics att̂ = 1/2, ξ2
c /ξ

2 = 1/2 (solid curve). The dashed
curve shows the uncorrected TDGL kinetics resulting from (15). Arrows mark crossover times
between different stages of the ordering process, as referred to in the text.

Figure 2 shows the ordering kinetics obtained for the phase transition defined in section
3. Three stages can be identified, as indicated in figure 3 fort̂ = 1/2, p = 1/2. The
first stage is identical to TDGL kinetics. AboveQ(t) = Qeq/2 the coarsening stage sets
in, marking the formation of the first nuclei of ordered phase. Their growth, together with
the ongoing ordering process, dominates the kinetics during the intermediate stage. By the
time Qeq would have been reached for a uniform order parameter, the nucleation process
ceases and further ordering is dominated by growth and coalescence of previously formed
clusters. At this stage, the only remaining contributions to the numerator in equation (24)
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are located atk ≈ ξ−1
c andk = 0. The particular duration of each stage is determined by

the degree of conservation (figure 2). Forξ2
c /ξ

2 ' 1 the first stage is irrelevant and, after
some time delay, nucleation proceeds rapidly; this is then followed by the growth process.

If the postulated growth law, equation (17), dominates the late stages of the ordering,
then a plot of ln{− ln[1 − (Qν − Q0)/(Qeq− Q0)]} versus the logarithm of time should
reveal a linear behaviour. This is confirmed in figure 4, whereQν is calculated using
Qν = (〈Q〉−(1−p)Qµ)/p. Though deviations from the expected line become more obvious
with larger degrees of conservation, the overall behaviour is consistent witht1/2-growth of
the order parameter during the late stages. Assuming growing clusters of dimensionality
d = 3, this suggests a growth exponentn = 1/3, in accordance with the fact that the cluster
growth is triggered by order parameter conservation.

Figure 4. A log–log plot ofQν = (〈Q〉 − (1− p)Qµ)/p for t̂ = 9/10, ξ2
c /ξ

2 = 1/10 (solid
curve) andt̂ = 1/2, ξ2

c /ξ
2 = 1/2 (dashed curve). The lines correspond to a time exponent of

m = 1/2.

6. Conclusions

We have seen that non-uniformity of the order parameter can dramatically alter the ordering
kinetics at low temperatures. We now have to address the actual mechanism giving rise to
partial order parameter conservation.

Given a large correlation length, i.e. at high temperatures, ordering can proceed rapidly
via correlated cation exchange processes, giving rise to the applicability of the TDGL
approach. However, if the temperature falls far belowTc a different mechanism becomes
favourable, as soon as parts of the structure have established the equilibrium state or even
a fully ordered structure locally. In this case any cation exchange process involving the
ordered part of the material is energetically unfavourable. Successful cation exchange
processes will thus involve cations in front of the propagating wall. This, on the other
hand, impedes ordering there, i.e. it conserves the local order parameteroutside of the
ordered clusters. The order parameter is effectively redistributed from the disordered regions
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towards the boundaries of ordered clusters, and the fluctuations which were initially present
are stabilized or even amplified. Further increase of the average order parameter is now
only possible via growth of the ordered clusters.

The approach that we have outlined in this paper emphasizes the importance of the
adjustments made to the time constant of TDGL rate laws. These adjustments are necessary
if the correlation length of the underlying order–disorder phase transition approaches the
average length scale of the diffusion processes. In that case the kinetic process crosses over
from a stage dominated by TDGL kinetics to a stage dominated by growth and coalescence
of ordered clusters.
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